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Abstract

Future climatic conditions and an increasing global world population require
the development of higher yielding and more resilient crops. Aquaporins are
increasingly being studied as genetic engineering targets to tackle food security
challenges. They constitute a major family of membrane spanning channel proteins,
selectively facilitating the passive bidirectional passage of a range of solutes
essential for numerous plant processes, including water relations, growth and
development, stress responses, root nutrient uptake, and photosynthesis. In plants,
aquaporins occur in five major subfamilies that differ in temporal and spatial gene
expression, subcellular protein localisation, substrate specificity, and post-
translational regulatory mechanisms, collectively providing a dynamic
transportation network spanning the entire plant. Of particular interest are
aquaporins in the Plasma membrane Intrinsic Proteins (PIP) subfamily, some of
which have been shown to enhance membrane permeability to COz. This role could
influence photosynthetic efficiency, which is limited by the ease with which CO>
diffuses across cellular membranes from intercellular airspaces to the site of fixation
within the chloroplast (i.e. mesophyll conductance). As such, PIP aquaporins are an
attractive target for engineering enhanced photosynthesis. The ability to
manipulate aquaporins towards improving plant productivity is reliant on
expanding our insight into their diversity and functional roles.

My PhD project contributes towards a better understanding of aquaporin
biology, providing a comprehensive overview of the Nicotiana tabacum (tobacco)
aquaporin family. Tobacco is a popular model system capable of scaling from the
laboratory to the field, it is closely related to several major economic crops (e.g.
tomato, potato, eggplant and capsicum) and itself has new commercial applications.
To date one PIP gene has been described in tobacco to be a CO2 pore, NtAQP1.
However, beyond this there is little characterization of tobacco aquaporins in the
literature.

We identified that the tobacco genome encodes 76 aquaporins, making it the
second largest characterised aquaporin family after that of Brassica napus,

containing 121 genes. Tobacco aquaporins fall into five distinct subfamilies, for
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which we characterised phylogenetic relationships, gene structures, protein
sequences, selectivity filter compositions, sub-cellular localisation, and tissue-

specific expression.

Once the tobacco aquaporin family was established, we functionally
characterized nine tobacco AQPs occurring in the PIP, TIP and NIP subfamilies. We
determined their sub-cellular localisation in planta and their substrate specificities
through yeast-based functional assays developed within our laboratory. These
yeast-based assays allowed us to test aquaporin permeability for a range of
substrates important for plant function (water, hydrogen peroxide, urea and boron).
3D protein homology modelling was then used for an integrated aquaporin
characterisation, linking substrate specificities and amino acid primary sequence to

the pores’ radius and physico-chemical properties.

Towards enhancing photosynthesis, we identified several PIP aquaporins
that are likely candidates for transporting CO; and constitutively over-expressed
these in tobacco. Gas exchange measurements showed gene-specific alterations to
photosynthesis. Although enhanced photosynthetic rates and photosynthetic
parameters (Vemax and J) were observed with PIP1 over expression, no significant
increase in mesophyll conductance was observed. Further investigations are
needed to re-examine the consequence of overexpression of NtAQP1 on mesophyll
conductance and clarify the possible pleiotropic effects that constitutive over-

expression of tobacco PIPs has on leaf properties and plant growth.
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Chapter 1: General Introduction

1.1 Food security challenges

Unprecedented increases in crop yields are required in order to feed a
projected world population of 9 billion people by the year 2050 (Ray etal. 2013). It
is currently estimated that nearly ~12.5% of the global population are suffering
from chronic hunger, with numbers on the rise (FAO 2009). In addition to
population increases, global climate change will further challenge our efforts in
ensuring sufficient food production, due to increasing temperatures and altered
patterns of more erratic rainfall (Parry and Hawkesford 2010).

Trends in global crop yield (solid lines, Figure 1.1) are projected to increase
at a rate of 0.9%-1.6% per year for key agricultural crops: maize, rice, wheat and
soybean. In order to meet the requirement of doubling annual crop yields by the
year 2050, a 2.4% annual yield increase is needed (indicated by dashed lines, Figure
1.1) (Ray et al. 2013). Previous major advances in agricultural production were
achieved in the 1960’s, with the ‘green revolution’ bringing about yield increases in
major crops, predominantly through dwarfing which increased biomass
partitioning to the grain (Khush 2001). Additionally, the expansion of irrigation
structures, modernisation of farming techniques, utilisation of hybrid seed stocks,
synthetic nitrogen fertilisers and pesticides, collectively facilitated a massive
increase of crop yields globally. Since then, we have observed a plateauing of yield
increases of food crops, with reports stating that crop yields are no longer improving
on 24-39% of our most important crop land areas (Ray et al. 2012). In order to
drastically increase crop yields and food production, innovations in genetic
engineering are required, enabling a new ‘green revolution’ in agricultural

productivity (Georges and Ray 2017).
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Figure 1. 1. Global projection of yield increases of major crop species to 2050. Observed area-
weighted global yield (closed circles) for maize (black), rice (blue), wheat (magenta) and soybean
(green) between 1961-2008. Solid lines indicate yield projection to 2050. Dashed lines represent the
annual ~2.4% yield improvement trend required to double crop production by 2050 (without an

increase in cultivated agricultural land)(Ray et al. 2013) .

1.2 Increasing biomass production through increased photosynthetic rates
Increasing agricultural productivity in order to address future food demands
is reliant on the production of higher yielding crops. Crop yield can be described as
a product of biomass and harvest index (ratio of grain yield to above ground
biomass). Since the ‘green revolution’, the crop harvest index is thought to have
reached a maximum biological limit, so researchers are now focusing on increasing
crop biomass production in order to increase yield (Fischer et al. 2014).
Photosynthesis is thought to be one of the key remaining traits available to
target for improvement in plants to increase crop yield, with an overwhelming
weight of evidence from plants grown at elevated atmospheric carbon dioxide (CO2)
concentrations showing a link between increased photosynthesis and biomass

production (Long et al. 2006). Photosynthesis is a vital process that sustains nearly
2
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all life on earth and its efficiency can be limited by the diffusion of atmospheric CO>
into the chloroplast (Evans et al. 2009). Stomatal conductance (gs) to COz enables
the diffusion of ambient CO2 (C.) into the intercellular air spaces. Intercellular CO;
(Ci) then diffuses into mesophyll cells to reach the chloroplast (Cc). The ease with
which COy; is able to diffuse from the intercellular airspaces to the chloroplast can
be referred to as the mesophyll conductance (gm). Mesophyll conductance is one of
the three main physiological processes limiting the uptake and fixation of CO2 for
photosynthesis, along with stomatal conductance and biochemical capacity (von
Caemmerer and Evans 1991; Flexas et al. 2012). Mesophyll conductance can be
affected by the surface area of chloroplasts exposed to intercellular airspaces, cell
wall thickness, the permeability of the plasma membrane to CO; and cytosolic and
stromal resistances (Evans et al. 1994; Terashima et al. 2011; Tholen and Zhu
2011).

A strategy to increase photosynthetic efficiency could be to facilitate
diffusion of CO; into the chloroplasts by enhancing mesophyll conductance, as the
increased partial pressure of CO; in the chloroplast would increase CO: fixation
rates (Evans et al. 1994; von Caemmerer and Evans 2010). The cell wall and
membranes restrict the ease with which CO; is able to diffuse into the chloroplast.
It was traditionally thought that because CO: is lipophilic, it could readily pass
through the lipid bilayer to meet CO; fixation rates in the chloroplast. However,
biological membranes have high protein and sterol content, reducing their
permeability for gas diffusion (Engelman 2005; Evans et al. 2009). In recent years,
plant AQPs have been implicated with increasing membrane permeability to COo,
suggesting that CO; diffusion across the plasma membrane of mesophyll cells could
be possible through two parallel pathways, bulk membrane flow as well as through

CO2-permeable AQPs (Evans et al. 2009).

1.3 Facilitated diffusion through Aquaporins

Cellular membranes are dynamic structures, continuously adjusting their
composition in order to allow plants to respond to developmental signals, stresses,
and changing environments (Marschner 2011). The biological function of cell

membranes is conferred by its protein composition, with the lipid bilayer providing

3
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a basic structure and permeability barrier, and integral transmembrane proteins
facilitating diffusion of selected substrates (Marschner 2011). Cell membrane
diffusion is a fundamental process of biology and one of the oldest subjects studied
in plant physiology (Hedrich and Marten 2006). Diffusional events at the cellular
level eventuate in the coordinated transport of substrates throughout the plant to
support development and growth.

Plant membranes contain three major classes of transport proteins known
as ATP-powered pumps, transporters, and channel proteins (Chrispeels et al. 1999).
Pumps, are active transporters that use the energy of ATP hydrolysis to move
substrates across the membrane against a concentration gradient or electrical
potential. Transporters move a variety of molecules across a membrane along or
against a gradient at rates of 102 to 104 molecules per second. Unlike the first two
classes, channel proteins are bidirectional and increase membrane permeability to
a particular molecule. Channel proteins are permeable to a wide range of substrates
and up to 108 molecules per second can pass through them.

In plants, aquaporins (AQPs) constitute a major family of such channel
proteins that facilitate selective transport of substrates for numerous biological
processes including, water relations, plant development, stress responses, and
photosynthesis (Hachez et al. 2006; Groszmann et al. 2017). The AQP monomer
forms a characteristic hour-glass membrane-spanning pore that assembles as
tetrameric complexes in cell membranes. The union of the four monomers, creates
a fifth pore at the centre of the tetramer which may provide an additional diffusional

path (Frick et al. 2013).
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Figure 1. 2. Schematic and 3D representation of an AQP monomer, and representation of an
AQP tetramer. A. AQP monomers have a highly conserved structure, comprising of six
transmembrane helices (TM 1-6, Blue to Red), 5 connecting Loops (Loop A-Loop E) and cytoplasmic
N- and C terminus. Loops B and Loop E form half helices folding into the membrane. B. 3D structure
of SpinachPIP2;1 (SoPIP2;1, PDB:2b5f1.A) monomer, showing arrangement of transmembrane
helical domains and connecting loops. C. Top view of the extracellular face of an AQP tetramer.
Individual monomer pores are labelled 1-4. An additional central pore, pore 5, occurs upon tetramer
assembly, providing an extra cavity for permeation of substrates. Panels A and C were adapted from

(Verkman et al. 2014).

The substrate specificity of a given AQP is conferred by the complement of
pore lining residues which achieve specificity through a combination of size
exclusion and biochemical interactions with substrates (Hove and Bhave 2011). Key
residues that have been identified to confer specificity include the dual Asn-Pro-Ala
(NPA) motifs, the aromatic/Arginine filter (ar/R filter) and Froger’s positions (P1-
P5) (Froger etal. 1998; Mitani-Ueno et al. 2011; Murata etal. 2000). However, other
pore-lining residues and lengths of the various transmembrane and loop domains
of the AQP monomer are also known to influence substrate specificity through

conformational changes of the pore size and accessibility (Wu and Beitz 2007; Hove
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and Bhave 2011). It is likely that other residues that determine specificity and

transport efficiency remain to be elucidated.

1.3.1 Diversification of Aquaporins in land plants

Aquaporins, which are members of the major intrinsic proteins (MIP)
superfamily, are found across all taxonomic kingdoms (Abascal et al. 2014). In land
plants, AQPs are by far the most extensively diversified. AQP diversification in land
plants is facilitated by their propensity for gene duplication events (Groszmann et
al. 2017). Plant AQPs are capable of transporting a wide variety of substrates
including water, ammonia, urea, carbon dioxide, hydrogen peroxide, boron, silicon
and other metalloids (Gomes et al. 2009; Pommerrenig et al. 2015; Hove and Bhave
2011). More recently, lactic acid, oxygen, and cations have been identified as
permeating substrates (Choi and Roberts 2007; Zwiazek etal. 2017; Byrtetal. 2017;
Bienert et al. 2013), with RNA molecules also implicated as a possible transported
substrate (Reichel et al. 2016).

Plant AQPs are divided into five phylogenetically distinct sub-families and
further into sub-groups; Plasma membrane Intrinsic Proteins (PIPs), Tonoplast
Intrinsic Proteins (TIPs), Small basic Intrinsic Proteins (SIPs), Nodulin 26-like
Intrinsic Proteins (NIPs), and X Intrinsic Proteins (XIPs) (Danielson and Johanson
2008; Johanson and Gustavsson 2002; Kaldenhoff and Fischer 2006). The sub-
families differ to some degree in substrate specificity and integrate into different
cellular membranes, providing plants with a versatile system for both sub-cellular
compartmentalisation and intercellular transport, as illustrated in Figure 1.3
(Maurel et al. 2008). Further versatility in AQP function is achieved through tightly
regulated spatial and temporal tissue-specific expression of different AQP genes, as
well as post-translational modification of AQP proteins (e.g. phosphorylation) that
controls membrane trafficking and channel activity (Santoni 2017; Luu and Maurel

2013).
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Figure 1. 3 Multiple subcellular localisations and substrate specificities

of plant AQPs.

Different AQP subclasses (illustrated by distinct colours) integrate in various membranes and

subcellular compartments such as the plasma membrane, central vacuole membrane (tonoplast),

endoplasmic reticulum (ER), protein storage vacuoles and endosomes.

Permeating substrates

include water, CO2, h